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A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly 
heated or cooled. Lubrication theory is used to study thin drops subject to capillary, 
thermocapillary and gravity forces, and a variety of contact-angle-versus-speed 
conditions. It is found for isothermal drops that gravity is very important at large 
times and determines the power law for unlimited spreading. Predictions compare 
well with the experimental data on isothermal spreading for both two-dimensional 
and axisymmetric configurations. It is found that heating (cooling) retards 
(augments) the spreading process by creating flows that counteract (reinforce) those 
associated with isothermal spreading. For zero advancing contact angle, heating will 
prevent the drop from spreading to infinity. Thus, the heat transfer serves as a 
sensitive control on the spreading. 

1. Introduction 
The spreading of a liquid on a smooth solid is a fundamental problem in fluid 

mechanics. It exemplifies the general problem of moving contact lines, which enters 
a host of applications such as coating technology, mould filling and the performance 
in Space of fuel tanks. It involves the modelling of the local mechanics near the 
contact lines whenever a continuum theory of the motion is envisaged. A spreading 
drop involves bulk, surface and line forces intrinsically coupled through a free- 
boundary problem. The configuration is shown in figure 1. 

Body forces affect the drop in a classical sense ; gravity will greatly promote the 
spreading if the hydrostatic head is appreciable. 

Surface forces enter the description through the liquid/gas interface on which 
surface tension acts. Further, if the contact line moves, and the no-slip condition is 
applied on the solid/liquid interface, then, as shown by Dussan V. & Davis (1974) 
there is a force singularity at the contact line. The implication is that on a continuum 
level there is effective slip at  the liquid/solid interface. This is also a surface effect. 

At the contact line there is a contact-angle condition. In the two-dimensional case, 
say, the interface slope h, at the contact line at  x = a must satisfy the compatibility 
condition h,(a, t )  = -tan 8, where 8 is the contact angle and the interface is located 
at z = h(z,  t ) ,  as shown in figure 1. One must specify a constitutive law for 8, since it 
is here that the chemistry of the surfaces has an effect. If the interface moves with 
speed U,  then one may specify 8 = F( U) ; this determines the mobility of the contact 
line. Dussan V. (1979) discusses such models and the data that underlie them. The 
contact-angle condition gives a line effect in the model description. 
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FIQURE 1. Sketch of the problem geometry. 

There are a number of approaches to the modelling of the dynamics of spreading 
drops. These can be roughly categorized as (i) excision, (ii) microscopic and (iii) 
uniform analyses. 

(i) Tanner (1979) considered viscous and capillary forces only and used lubrication 
theory to describe the bulk drop, away from the contact line. Analysis of the excised 
contact-line region is replaced by a priori statements about the ' outer ' balances and 
about the drop shape. For unlimited spreading, he found power laws for the drop 
radius as a function of time t for large times. He found a - d in two dimensions and 
a N th in the axisymmetric case. Starov (1983), further, extracted the multiplicative 
prefactor in these forms. Lopez, Miller & Ruckenstein (1976) took a similar approach, 
but ignored capillarity, and instead included gravity or long-range molecular forces 
near x = a. They sought similarity solutions and found for the gravity-dominated 
drop that a - ti in two dimensions and a - ti in the axisymmetric case. They pointed 
out that these similarity solutions gave infinite shear stresses at the contact lines ; the 
solutions thus break down at  the main points of interest. The case in which long- 
range forces dominate leads to thin films with no discernible leading edges. See de 
Gennes (1985) for a review of these aspects. A self-consistent excision procedure with 
appropriate matching t o  a local wedge flow has been used extensively on contact-line 
problems by Dussan V. ; see Ngan & Dussan V. (1989). 

(ii) Another approach to spreading is that of de Gennes (1985) who wished to 
examine the small-scale physics of contact lines. He included in his model long-range 
van der Waals repulsions and so obtained a drop that possesses no contact line 
nearby, but instead found a thick drop that smoothly blends into a precursor film 
that extends from the main drop, sometimes far forward along the plate. On the one 
hand, there is no longer a contact line nearby to consider, and, on the other hand, he 
did not consider the actual contact line at the edge of the film. This approach may 
in fact lead to useful information on the functional form of F, but its Girect pursuit 
requires one to examine thin films whose thicknesses are in the 1CLlOO A range ; these 
are essentially invisible to a continuum theory. 

(iii) There is a uniform approach to the continuum theory in which one considers 
the whole drop including the contact line, inserts local slip nearby and poses 8 = 
F(U).  Greenspan (1978) posed such a model including both capillary and viscous 
forces and with F linear. He used lubrication theory for flat drops and obtained an 
evolutionary system giving the drop history. 

The present paper aims to analyse the spreading of a viscous drop on a smooth, 
horizontal plate. The approach generalizes that of Greenspan (1978) in three ways. 
(i) The angle-versus-speed characteristic is generalized to U = K(8--BA)m,  where 8, is 
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the (static) advancing contact angle and K is an empirical coefficient. We term the 
factor m the mobility exponent. This form with m = 1 was used by Greenspan, while 
the case m = 3 is suggested for the apparent angle by Schwartz & Tejeda (1972), 
Hoffman (1975) and Tanner (1979) using data on contact-line dynamics. The case of 
constant contact angle, m-+ 00, has been considered by Hocking (1977, 1981, 1983), 
Hocking & Rivers (1982), Haley & Miksis (1991) and others. (ii) Gravity, acting 
vertically, is included. (iii) The plate is uniformly heated or cooled, compared to the 
surrounding gas. If the plate is hotter than the surrounding gas, then the non- 
isothermal liquidlgas interface will have the contact line hotter than the drop 
summit. Thermocapillarity will drive a flow in the viscous drop that will either 
augment or hinder the spreading. The heat transfer is conduction dominated in this 
lubrication limit. 

The analysis obtains generalized evolution equations for the spreading in both 
two-dimensional and axisymmetric configurations. The equations are then examined 
in the limit of small capillary number in which spreading rates, interface shapes and 
velocity fields can be determined over the whole drop. A number of new results are 
obtained . 

In the isothermal case solutions that include viscous forces, gravity and surface 
tension show how thin drops with negligible gravity effects can spread to such large 
size that gravity becomes important, as observed by Cazabat & Cohen Stuart (1986). 
When the static advancing angle 8A = 0, the drop spreads to infinity. The power laws 
obtained here agree very well with those of previous theory and experiment, 
validating both the lubrication theory and the choices of the mobility exponent 
m = 3. 

In the non-isothermal case thermocapillary-driven flows create bulk flows that 
alter the spreading process. For example a drop with advancing contact angle 8, = 
0 will spread forever under isothermal conditions. The same drop, if 8, = 0 still, will 
spread only finitely far if the plate is heated. If the plate is cooled, then a drop will 
spread further than otherwise. The heating or cooling can thus be used to control the 
spreading process. 

2. Formulation 
Consider a drop of liquid on a smooth, horizontal rigid plane located at a position 

z = 0 and kept at a constant temperature T = T,. The drop is composed of a non- 
volatile Newtonian liquid with constant material properties and surrounded by a 
passive gas, whose viscosity and thermal conductivity are taken to be very small 
compared to those of the liquid; the far-field gas temperature is T,. The drop, shown 
in figure 1, is either two-dimensional in Cartesian coordinates (2, z )  or axisymmetric 
in cylindrical coordinates ( r ,  z).  We shall examine both cases and denote equation 
numbers by p (plane) and a (axisymmetric), respectively. The shape of the interface 
between the spreading liquid and the ambient gas is denoted by z = h, and the 
position of the contact line is given by either x = a or r = a. 

The velocity and thermal fields in the liquid are governed by the NavierStokes, 
the continuity, and the energy equations : 
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where k = (0, l) ,  v = (u, w) is the velocity vector, p is the pressure and T is the 
temperature of the liquid. Here g is the magnitude of the gravitational acceleration, 
p is the density, ,LA is the viscosity, c p  is the specific heat, and A the heat conductivity 
of the liquid. 

Equations (2.1)-(2.3) are subject to the following boundary conditions at  the 
liquid/solid interface : 

The rigid plane is considered to be impenetrable, perfectly conducting material. 
Following Dussan V. & Davis (1974), the no-slip condition a t  the rigid boundary is 
relaxed to avoid the appearance of a shear-stress singularity at  the moving contact 
line. The slip coefficient p’ in (2.4) is taken to be a small constant. 

At  the liquid/gas interface there are the following conditions : 

(2.5a) 

aT A,  
an 6 

- A -  = - ( T - T , ) .  

Here T denotes the stress tensor of the liquid, n and t are the unit normal and 
tangential vectors with n pointing out of the liquid (see figure 1). Equation (2.5) is 
the kinematic condition while (2.6) and (2.7) give the dynamic conditions, balancing 
normally and tangentially, the stress components across the liquid/gas interface. 
The mean curvature H in (2.6) is given by 

2H = V . { [ l  +IVh12]-kVh}. (2-9) 

a(T) = a, -y (T-T, ) ,  (2.10) 

Here the surface tension c depends linearly on temperature 

y > 0, so that (2.7) incorporates the effects of thermocapillarity. The surface tension 
in (2.10) is denoted by a and a, is the surface tension at a temperature T,. 

The thermal boundary condition at  the liquid/gas interface is chosen to be of third 
type, i.e. we use a mixed condition on the heat flux and the local temperature, 
involving the parameter group A,/A&, which contains all limiting cases between an 
adiabatic and a perfectly conducting boundary. Here A, denotes the thermal 
conductivity of the ambient gas, while 6 is the thickness of the thermal boundary 
layer established within the gas. Such a model may break down near the contact line 
when h is smaller than 6 but such a model is a reasonable one for an initial 
investigation. 
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We must specify initial conditions, symmetry or smoothness conditions, and 
volume constraints on the drop shape. These are as follows: 

h(x,O) = h o b ) ,  ho(ao) = 0, 40) = a,, (2.11 P) 
(2 .114 h(r,  0) = ho(r), ho(a0) = 0, 40) = a,, 

(2.12 P) 
ah0 a3h0 
- ( O )  = 0, - (0) = 0, ax ax3 

(2.12 a) 

3 (ao) = -tan 0,. 
ar ( 2 . 1 3 ~ )  

Thus, the drop is symmetric and smooth initially with an edge at a, and an initial 
contact angle of 0,. The volume of the drop is conserved during the spreading process 
and can be calculated from the initial drop shape. The volume per unit width in the 
two-dimensional case is given by 

(2.14P) 

while the volume in the axisymmetric case is given by 

Vo = 27c I" rho(r) dr. (2.144 

For t > 0 the drop retains its symmetries ; the edge, symmetry, smoothness and 

h[a(t) ,  t ]  = 0 (condition of contact), (2.15) 

volume conditions are thus given as follows: 

(symmetry and 

ah a3h 
- ( O , t )  = 0, - ( O , t )  = 0 ax ax3 

smoothness conditions), 
( 2 . 1 6 ~ )  - ( o , t )  ah = 0, lim{r$(o,t)} = OJ 

ar r+O 

(2.17 P) 
(contact-angle condition), 

(2.17 a) I ah 
- [ [a ( t ) , t ]  = -tanO(t) ax 
ah 
- [a(t), t ]  = -tan O(t ) .  
ar 

(2-18P) 
(conservation of volume). 

( 2 . 1 8 ~ )  

h(x, t )  dx = Vo r' -aW 

2n: 1"' rh(r, t )  dr = Vo 

Based on various experimental results, Dussan V. (1979) discusses how the 
apparent contact angle depends on the speed, &/at, of the contact line. In  the 
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(a) m = 1 
8, 

(c) m = to 8, 

- 
at 

FIGURE 2. Typical measurements of contact angle after Dussan V. (1979); symbols represent 
experimental data, solid lines correspond to various mobility exponents m in model equation (2.19). 

following we take the angle 0 to be given by a similar form ; the constitutive form is 
chosen here to be 

a, = K ( B - O A ) m ,  m 2 1, (2.19) 

where K > 0 is an empirical constant and 8,2 0 is the (static) advancing contact 
angle. The typical behaviour of experimental data (from Dussan V. 1979) and the 
above model (2.19) for various m are shown in figure 2. The form (2.19) €or m = 3 is 
suggested by the data of Schwartz & Tejeda (1972), Hoffman (1975), and Tanner 
(1979). 
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3. Scaling and the lubrication approximation 
The analysis of Greenspan (1978) uses lubrication theory to simplify the governing 

system for isothermal spreading. The present work generalizes that of Greenspan in 
three ways. (i) The effects of gravity are included. (ii) The contact-angle-versus-speed 
characteristic (2.19) allows for power-law behaviour with exponent m ; Greenspan 
used m = 1 .  (iii) Non-isothermal spreading is allowed through the action of 
thermocapillarity . 

We generalize the analysis of Greenspan (1978) by introducing the following set of 
dimensionless variables : 

Thus, the space variables (2, z )  or ( r ,  z )  are scaled using the initial shape of the drop 
in the horizontal and vertical directions, respectively. The timescale is constructed 
using the horizontal lengthscale a, together with an estimate of the initial speed of 
the contact line, KO,", which is obtained by use of (2.19) for OA = 0. Conservation of 
mass determines the velocity scales. The pressure scale is obtained by balancing the 
pressure gradients and viscous terms in the horizontal component of the 
Navier-Stokes equations. The temperature scaling is chosen to allow the largest 
possible (unit order) temperature difference. 

If scalings (3.1) are introduced into system (2.1)-(2.19), the leading-order 
asymptotic equations valid as 8, + 0 lead to the 'lubrication approximation ' : 

- p ,  -t- u,, = 0, (3.2P) 
- P , - t - ~ z z  = 0, ( 3 . 2 ~ )  

G - p  - -=o  
" C  ' (3.3) 

uz+wz = 0 ,  (3.4P) 
( 3 . 4 4  

T, = 0, (3 .5)  
where subscripts denote partial differentiation. For simplicity, all asterisks have 
been dropped. The boundary conditions are as follows: 

(4, + m, = 0, 

z = O :  u = & ,  w = O ,  T = l ;  (3.6) 
z = h :  w-h,  = uh,, (3.7P) 

w-h,  = uh,, ( 3 . 7 4  
-CP = h,,, ( 3 3 P )  

1 
r -Cp = h,,+-h,, ( 3 . 8 ~ )  

ACu, = - (T, + h, T,) , 
ACU, = -(T,+h,T,), 

T,+BT = 0. 

(3.9P) 
( 3 . 9 4  
(3.10) ' 
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Further, for t = 0 
h(x,O) = ho(z) ,  ho(l)  = 0, a(0) = 1,  (3.11 P) 

h(r,O) = ho(r),  ho ( l )  = 0, a(0) = 1,  ( 3 . 1 1 ~ )  

h,,(O) = 0, ~ 0 , , , ~ 0 ~  = 0, (3.12P) 

(3.12 a) 

( 3 . 1 4 ~ )  

and, for t > 0 

h,(O, t )  = 0, lim [rh,,,(r, t)] = 0, 
r+O 

( 3 . 1 6 ~ )  

1 = 27c rh(r, t )  dr. I"' ( 3 . 1 8 ~ )  

The instantaneous contact angle 8(t) is expressed in terms of the speed of the 

(3.19) 

A number of dimensionless parameters arise. These are the capillary number C, the 
Bond number G, the thermocapillary number AC, the Biot number B, as well as the 
slip coefficient p. The definitions are as follows: 

contact line, i.e. 
@ ( t )  = [at(t)I1/" + 8,. 

The capillary number compares the dissipative effects of angle-versus-speed 
variations to mean surface tension. The Bond number relates gravity forces to  mean 
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surface tension. The thermocapillary number measures the fractional thermal change 
in the surface tension. Finally, the Biot number characterizes the quality of the heat 
transfer occurring at the liquid/gas interface. In  particular B + 0 and B + co give the 
adiabatic and the perfectly conducting limits, respectively. 

The simplified Navier-Stokes equations (3 .2)  and (3.3) show that the horizontal 
pressure gradient is balanced by the viscous shear stresses, while vertically there is 
a hydrostatic balance. From the energy equation (3 .5)  we see that heat is transported 
across the drop mainly by conduction. 

4. Derivation of the evolution equation 
Within the lubrication approximation the NavierStokes equations (3.2) and (3.3) 

and the continuity equation (3.4), decouple from the heat transport. Therefore, one 
can solve for the thermal field, governed by (3 .5)  and subject to the thermal 
boundary conditions in (3 .6)  and (3.10) to obtain 

1 +B(h-z )  
1+Bh 

T =  

The position of the liquid/gaa interface, h(z ,  t )  or h(r, t )  is unknown a priori, and 
through h the temperature will depend on both space coordinates as well as on time. 
The interface temperature can be found from (4 .1)  as 

1 
1+Bh' 

T(h)  = - 

Equation (4 .2)  shows for both the adiabatic and the perfectly conducting limits 
that the temperature along the liquidlgas interface is constant. In fact, 

B+O: T(h)  = 1 , l  

B + a :  T(h)  = O . J  
(4.3) 

The adiabatic limit results in the interface temperature T,, while the perfectly 
conducting limit gives T,.  In order to have variations in temperature and therefore 
surface-tension gradients along the interface, we can only have the Biot number in 
the range 0 < B < 00. 

We use continuity equation (3.4) and integrate across the liquid layer, using the 
appropriate boundary conditions in (3.6) and (3.7) to obtain 

h,+- u d z = o ,  
i3X al 

h t + i l u d z  = 0.  (4.4a)  

The integration of the momentum equation (3.3) and application of the normal-stress 
boundary condition (3.8) gives 

h,,+Cp(z,O,t)-Gh = 0, (4.5P) 

(4.5a)  
1 
r 

h,, +-h,  + Cp(r, 0 ,  t )  - Gh = 0. 
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The horizontal momentum equation (3.2) is integrated twice with respect to z and 
the boundary conditions in (3.6) and (3.9) are applied, to obtain 

{ h" + Ph} h,, (4.6P) 
C B  C udz=  -+/3h2 D,,h+- 1 {T } AC(1+Bh)2 2 

'1 {: } AC(1+Bh)2 { h" 2 + ph} h,, ( 4 . 2 ~ )  C -  (ru)dz= -+/3h2 D3rh+- 
r 

C B  

Here the operators D,, and D,, are defined as 

Equations (4.4) and (4.6) then provide an evolution equation for the drop shape as 
follows : 

Ch,+- '{[: -+ph2 ] rD,,h+- AC(1+Bh)2 [E+ph]rh , }  2 = 0. ( 4 . 8 ~ )  r r 

The evolution equation (4.8) allows us to bypass the free-boundary problem for h, 
though the edge position a(t) is still unknown. The edge, symmetry and volume 
condition on the drop shape, (3.11)-(3.19), still apply. 

In what follows, the Biot number will be considered to be much smaller than unity, 

B @  1, (4.9) 

so that the effect of thermocapillarity, as shown in evolution equations (4.8), is 
incorporated only in the product CBIAC. This serves as the effective Marangoni 
number I@. 

- CB M = -  
AC * 

(4.10) 

When i@ > 0, the plate is heated with respect to the gas, while if M < 0, it is cooled. 

4.1. The flow field 
After the solutions of the evolution equation (4.8) are known, one can calculate the 
velocity field : 

(4.11 P) 1 CU = [h(z+p)-&~.~] D,,h+&h,(~+/?), 

CW = [kz3 - $2 - phz] D,, h - [;z2 + pz] h, D,, h -&[;z2 + pz] h,,, 
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where the operators D,, and D4, are defined by 

a 
D4, h = -(Dab ax h), 

l a  
D,,. h = -- [r(D3,. h)]. r ar 

( 4 . 1 2 ~ )  

5. The C+-0 problem 
The evolutionary system (4.8) and (3.11)-(3.19) was derived for all parameters 

(3.20) of unit order, in particular C = O(1) and /I = O(1). There are two secondary 
limits that are of interest. 

The limit C+ 00 can be extracted from the general one by defining a new timescale 
7’ 

7 = C-’t. (5.1) 

By this transformation the evolution equation (4.8) becomes free of C, while the limit 
C-+ 00 removes the time derivative from the edge condition (3.17) and (3.19). We see 
that limiting form becomes 8 = 8,, the fixed contact-angle condition used 
extensively by Hocking (1977, 1981, 1983). Given C +  00, he examines the small-/3 
limit and finds that the natural parameter that emerges is 8, 

In our terms Hocking examines the regime 

c-1 Q 8. (5.3) 

Equation (2.19) gives that C a K ,  so that large K means that the contact line is very 
mobile. As K - ~  increases, the motion is retarded; the slope of the a, versus 8 
characteristic of figure 2 measures contact-line dissipation, as shown by Davis (1980). 

The limit C-tO was proposed by Greenspan (1978). Small C implies that the 
contact line is not very mobile. This regime is given by 

c Q 8, (5-4) 

which is governed by the general system by setting the time derivative in the 
evolution equation to zero; the spreading is then quasi-steady. 

Given the definition (3.20) of C and Hocking’s results, the first model limits 
spreading by slippage, while the second model limits the spreading by contact-line 
mobility. 

In this paper only the quasi-steady limit, C + 0, will be analysed. As discussed by 
Rosenblat 6 Davis (1985), the dropping of the unsteady term in (4.8) leads to an 
‘outer’ solution in time. The initial condition on h must be dropped while that on a(t) 
is enforced. The unsteady term a, in the contact-line conditions (3.17) and (3.19), is, 
of course, retained since this allows the drop to evolve. Details of the analysis are 
shown for the two-dimensional drop. The details are similar for the axisymmetric 
drop and only results are given. 

Equation (4.8) with B Q 1 and C+O can be integrated once; the integration 
constant is zero owing to the symmetry conditions. Our numerical integrations of the 
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resulting equation show that the solutions are indistinguishable for cases when the 
slip coefficient /3 = and /3 = 0. This is consistent with Greenspan's (1978) 
observation (for the case G = 0,  rn = 1, M = 0) that the imposition of slip is not 
necessary if one examines only the leading term of the small-C approximation. 

If /3 is set to zero and the Biot number is small, then the once-integrated evolution 
equation becomes 

(5-5P) (h,,-Gh),+@kf- - h ,  - - 0.  
h 

Similarly, 
[ i ( rh7)r -Gh]  +$If$ - h  = 0. 

r 
( 5 . 5 4  

6. Results : isothermal spreading 
When the system is isothermal, ~ = 0, (5.5) can be solved, subject to the 

conditions of symmetry (3.16), of contact (3.15) and of constant volume (3.18). The 
results (Hocking 1983) are 

cosh xGi- cosh aGi 
sinh aGi - aG4 cosh aGi ' 

h(x , t )  = 

and 
h(r , t )  = - Gi Io(rGi) -Io(aGi) 

a I1(aGi) -&GiIo(~Gi) ' 
( 6 . 1 ~ )  

where I,, is the modified Bessel function of the first kind. 

to yield 
Forms (6.1) are now substituted into the contact-angle conditions (3.17) and (3.19) 

ailrn + 0, = - h,(a, t )  = +G[aGi coth aGi- l]-', 

G Il (aGf ) /I , (  aGi) 
a;lm + 0, = - hr(a, t )  = - 

2 7 4 a G i  - l l (aG~) /I , , (aG~)  * 

( 6 . 2 ~ )  

Equations (6.2) are differential equations for a = a(t)  subject to the initial condition 
a(0)  = 1. 

Case 1: 8, > 0 ,  G = 0 

a, = 0, a = a,, and h, replaced by its G = 0 limit. The result is 
The drop spreads to an equilibrium configuration. This is governed by ( 6 . 2 ~ )  with 

i 
a: = (&) 

t 
a: = (&) * ( 6 . 3 ~ )  

Clearly, given the volume of the drop, the smaller the contact angle, the larger the 
final size. This final state is independent of exponent m. One can easily show also by 
perturbing (6.2) about the final state (6.3) that there is exponential approach to 
equilibrium. This is always the case for limited spreading, the spreading to a = 
a, < 00. 
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4 

t = 0.01 

h 0.5 1 
t = 1.2 

1 0.5 
t = 42.0 

0 0.5 1 .O 1.5 2.0 2.5 3.0 
X 

FIGURE 3. Isothermal spreading (M = 0) : evolution of velocity field with 8, = 0.25, and 
G = 0.05. Instantaneous streamlines are given in steps A P  = 0.01. 

Case 2 :  8, > 0, G > 0 

spreading, and increase a,. In fact, for small G, 
Gravity acting vertically downward will flatten the drop centre, accelerate the 

and 

a, - u",l+$","C, 

a,  - a",l++","), 
and u: is given by (6 .3) .  

Figure 3 shows the velocity fields in the approach to steady state where the density 
of the streamlines indicates the speed. Notice that the fluid is flowing downward, 
from the summit towards the contact line, and particularly downward along the 
liquidlgas interface. 

Case 3 :  8,=0, G = O  

When G = 0, ( 6 . 2 ~ )  has the form 
Since 8, = 0, the drop will experience unlimited spreading, i.e. a+ as t + co. 

6 5 P )  &tlm = I 
2' 
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Plane Axisymmetric 
a a t" a a t" Dominant 

Reference n n force 
Experiments 

Tanner (1979) 0.148 0.10M.112 ST 
Cazabat & Cohen Stuart (1986) - L* 10 ST 

1* G 
Chen (1988) 0.08o-O. 135 ST 

- 
- 

Theory 
- 1 - 1 

1 1 

10 
1 1 

Lopez et al. (1976) 5 8 G 
ST Tanner (1979) 7 10 
ST Starov (1983) - 

Greenspan (1978) m = 1 I 1 ST 
Present results m = 1 I f ST 

a G 
Present results m = 3 7 10 ST 

t 

P 7 G 

- 

- 

- 
1 - - 

1 - 1 

TABLE 1. Isothermal spreading results. The symbols ST and G denote surface-tension and 
gravity dominance, respectively. The asterisk indicates that error bars were not given. 

Similarly, in the axisymmetric case 
a3atlm = 8 

and for t + m a c, t1/(3m+l) 

where C, = [(3m+ 1) 8m]1/(3m+1). 
For the exponent m = 1, formulae ( 6 . 6 ~ )  and ( 6 . 6 ~ )  give a - ti and a -  ti, 

respectively. As shown in table 1, this behaviour is that of Greenspan (1978). For the 
exponent m = 3, these formulae give a - t; and a - tk. The former agrees with the 
excision result of Tanner (1979) and agrees with his experiment. The latter agrees 
with the excision result of Tanner (1979) and Starov (1983) and the experiments of 
Tanner (1979), Cazabat & Cohen Stuart (1986) and Chen (1988). The exponent in 
form ( 6 . 6 ~ )  has been inferred by de Gennes (1985) by presuming a spherical cap for 
h and assuming a form (2.19) for the contact angle. He selects the value m = 3 by 
consideration of van der Waals attractions in a precursor film. 

The present results in both geometries support the use of the present uniform 
theory and the mobility exponent m = 3, for capillary-dominated spreading. 

Case 4: 8, = 0, G > 0 
Since 8, = 0, the drop will experience unlimited spreading in that a + co as t + co . 

If one inspects (6.2), one sees that gravity should have a profound effect on the 
spreading process. In case 3, h, (a , t )  was approximated for small G with fixed a. 
However, when the spreading is unlimited, any fixed value of G ,  no matter how small 
will eventually result in aG4 becoming large ; the limits a + 00, G + 0 and G + 0, a + 
m are not equivalent. 

When aGi is large, ( 6 . 2 ~ )  becomes 

aatlm = ~4 2 3  (6.8P) 
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FIQURE 4. Isothermal spreading (a = 0) : positions of contact lines as function of time for 
various G with 8, = 0. 

(6.911) a - d t l l ( m + U ,  so that as t + 00 m 

where dm = [(@)m(m+ 1 ) 1 ~ / ( ~ + 1 ) .  (6-1OP) 
Similarly, in the axisymmetric case, ( 6 . 2 ~ )  gives 

a2atlm = 2Gt ( 6 . 8 ~ )  

where dm = [2Gi(2m+ 1 ) ] 1 / ( 2 m + 1 ) .  (6.10 a )  

For the exponent m = 1 ,  formulae ( 6 . 9 ~ )  and ( 6 . 9 ~ )  give a - t i  and a- ti ,  
respectively. These results are new. For the exponent m = 3, these formulae give 
a - ti and a - t ) ,  respectively. Both of these differ slightly from the excision results of 
Lopez et al. (1976). The axisymmetric-spreading data of Cazabat & Cohen Stuart 
(1986) seem to agree better with the form ti than our t:, suggesting that the mobility 
exponent m = 3.5 might give a better fit for their data. 

The present results in both geometries support the use of the present uniform 
theory with a mobility exponent m equal to somewhat greater than 3. 

The results show that the long-time spreading with gravity is substantially 
accelerated compared to the case G = 0, given the same mobility exponent m. The 
fact that gravity promotes spreading is no surprise. What seems paradoxical is the 
fact that a thin drop, which at  early times is negligibly affected by gravity, will be 
greatly affected by gravity later when it is much thinner. This is consistent with 
Cazabat & Cohen Stuart (1986) who have conducted spreading experiments on 
smooth surfaces with axisymmetric drops under isothermal conditions. They report 
two different scaling laws during the spreading, depending on whether or not gravity 
is important. In a first phase of the spreading process they found capillary effects to 
be dominant while, in a second phase, for larger t ,  the influence of gravity seems to 
be controlling the process. This behaviour can be understood as follows. At  early 

so that as t + m ,  a d m p / ( 2 m + l )  9 ( 6 . 9 ~ )  
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times the hydrostatic pressures are small compared to capillary forces, but as the 
drop becomes flatter and flatter, the curvature goes to zero faster than the thickness 
and the small hydrostatic pressures ultimately dominate. 

Figure 4 illustrates this behaviour; it shows our numerical solution of ( 6 . 2 ~ )  for 
m = 1 and various G. Note that as t + 00, the drop width a - ti when G 9 0;  compare 
this to the G = 0 result, a - ti .  Note as well that if one excludes initial transients, that  
the G = 0 behaviour a - ti is valid for early times even if G 4= 0. These results are 
consistent with the observations of Cazabat & Cohen Stuart (1986). They find that 
in practice the two ranges are not separated by values of the instantaneous Bond 
number G'"), 

= P P 2  - (4 (6.11) 

viz. G(a) < 1 meaning capillary domination and G@) > 1 meaning gravity domination. 
They are demarcated by fixed values of d a , .  

U 

7. Results : non-isothermal spreading 
When the plate is heated or cooled, there are thermocapillary forces that render 

the drop dynamic; fluid flow is always present. The shape of the drop for small Biot 
number is governed for C+O by (5.5). When this is integrated once, we find for the 
plane geometry that 

where s1 is a constant. Clearly, both h and h, are regular at x = a while the curvature 
undergoes rapid variations. 

h,,-Gh+@lnh = -sl (7.1P) 

Similarly, in the axisymmetric case 

1 
-(rh,),-Gh+a@lnh = -sl. 
r 

( 7 . 1 ~ )  

The curvature singularity a t  the contact lines implied by (7.1) is present even when 
the drop has spread to its final shape. I ts  presence is a result of flow against a 'static ' 
contact line across which there is a change in boundary data from prescribed velocity 
to prescribed shear stress. It results in logarithmically infinite pressures but finite 
forces, e.g. see Dussan V. (1987, equation 4.19). Such weak singularities occur in a 
variety of situations such as a t  the lip in die swell, e.g. see Davis (1980) for a review. 

In all that follows, the Marangoni number & is non-zero giving thermocapillary- 
driven motions in the drop. For reason of clarity we neglect gravitational effects 
(G = 0). For small values of @, perturbation theory can be used to solve (7.1), subject 
to the symmetry (3.16) and contact conditions (3.15), for constant volume (3.18). The 
asymptotic representation of h is 

- (a - z ) ~  In ( a  - x) - (a + x ) ~  In (a  + s)] , ( 7 . 2 ~ )  1 
+ :& [ (3' { 1 - ( krn} + ( a' - r2) {In rq) - 31. (7.2 a )  2a2-r2 

h(r, t )  - -- 
7t a4 
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FIQURE 5. Non-isothermal spreading : steady drop shapes and streamlines for M = 0.2,O = 0. The 
horizontal and vertical axes are rescaled using units appropriate to the steady drop under 
isothermal conditions. 

We substitute (7 .2)  into the contact-angle conditions (3.17) and (3.19) to obtain 

ailrn + 8, = - h,(a, t )  

( 1  -&3M), 
3 

2a2 
N- 

4 
w s ( 1 - Z  a4M ) . ( 7 . 3 4  

Equations (7.3) are approximations of differential equations for m 3 1 with a = a(t) 
subject to the initial conditions a(0) = 1 .  

Case 1 :  8, > 0, G = 0 

approaches a steady state. From (7 .3)  it follows for small m that 
The drop spreads to an equilibrium configuration with a = a, and the fluid flow 

and 

(7.4P) 
( 7 . 4 4  

where a& is given by (6.3).  By comparison with (6.4) it is seen that thermocapillarity 
on a heated plate acts oppositely to gravity. 

The drop on a heated plate (& > 0) exhibits a circulation driven by thermo- 
capillarity as shown in figure 5. The higher surface tension at the drop summit and 
a lower surface tension at the edges are responsible for the liquid/gas interface being 
'pulled' towards the drop summit. The flow is inward toward the centre where it 
turns around. This turning is driven by a pressure gradient in which there is a higher 
pressure at the centre and this deforms the drop; the interface steepens near the 
centre and flattens near the edge. This effect is similar to the deformation of the 

13-2 
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FIGURE 6. Non-isothermal spreading: evolution of the stream function with M = 0.2, 8, = 0.25 
and G = 0. Instantaneous streamlines are given in steps A$ = 0.01. 

surface in a slot caused by a recirculating thermocapillary flow as explained by Sen 
& Davis (1982). By conservation of mass, the edge is at a position a,  < aO, as shown 
in ( 7 . 4 ~ ) .  

A comparison of the transient behaviour for M = 0 and M > 0 shows that the 
heating slows the spreading and limits the final drop size. The evolution to the final 
shape involves the spreading flow down the interface as shown in figure 3 and a 
counterflow up the interface driven by thermocapillarity. The result is the complex 
flow field shown in figure 6. 

Equations (7.1)-(7.4) also hold for the case of a cooled plate, & < 0. In such a 
situation the direction of the thermocapillary flow is reversed, resulting in a flatter 
drop with extended edges a,  > aO, as given in (7.4). The thermocapillary-driven flow 
pulls liquid outward along the liquid/gas interface as shown in figure 7. Here the 
thermally driven flow aids the pure-spreading flow, shown in figure 3. 
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FIGURE 7. Non-isothermal spreading : evolution of velocity fields with M = - 0.1, 8, = 0.25 and 
G = 0. Given are instantaneous streamlines in steps A$ = 0.01. The dashed (solid) curve is obtained 
from equation ( 4 . 8 ~ )  (equation ( 7 . 3 ~ ) ) .  

Case 2 :  8 ,  = 0, G = 0 
In the absence of thermocapillarity, a drop with 8, = 0 will spread to infinity as 

shown by (7.3) withM = 0. When 8, = 0 andM is positive and small, it may be that 
hz(a,, 00) = 0 or h,(a, ,m) = 0 for a, < 00. Equations (7.3) are not necessarily 
reliable here since if2Mis small, a, is large and the conditions as& 4 1 or a4M 4 1 will 
fail. However, (7.1) or (4.8) will be accurate and we now address the final states 
attained. 

Case 3:  Final spreading, G = 0 
The effect of general heating can be investigated by solving system (4.8) 

numerically. Figure 8 shows such results for 8,= 0 and 8, = 0.50. In figure 8(a ) ,  
8, = 0, we show a curve for a, versus M. When M = 0, a + a: as t + CO. If the plate is 
cooled, M < 0, the spreading occurs faster and a, = 00 as well. For any degree for 
heating, i@ > 0, thermocapillary effects prevent spreading to infinity so that a, < 00. 

In this two-dimensional case, 8, = C = 0, one can infer the exact form of the curve. 
In the Appendix we show that there is a constant k such that 

a3M = k3 (7.5P) 
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FIQURE 8. Final spreading : final drop widths a, as functions of Marangoni number &? for G = 0 and 
for two different advancing contact angles (a) 8, = 0, and ( b )  8, = 0.5. The dashed (solid) curves 
are obtained from equation ( 4 . 8 ~ )  (equation ( 7 . 3 ~ ) ) .  

for all &. We obtain from our numerical solution that 

k x 1.22. (7.623) 
For this case, the small-& equations (7.3) are a reasonable approximation. If in these 
we set a = a, and a, = 0, we find that 

Ma%+28,a;-3 = 0, (7.7 P) 

( 7 . 7 4  

In the two-dimensional case for 0, = 0, ( 7 . 7 ~ )  gives k3 = 3 or k x 1.44. 
I n  figure 8 ( b ) ,  8, = 0.50, we show a curve for a, versus M .  Heating and cooling 

have their now expected effects. Various numerical cases have been investigated for 
8, in the range [0.1, 0.51 and these give us approximate forms valid for M+-co. 
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When M > 0, equations (7.3) for small i@ arc applicable for all M as shown in figure 
8(b ) .  For 8, 4 M ,  

a3,M - k, (7.9P) 
a4,M - k, ( 7 . 9 ~ )  

for some constants k, and k,. 

8. Discussion and conclusion 
We have considered the spreading of Newtonian-viscous-liquid drops on a heated 

or cooled horizontal plate. We used lubrication theory to reduce the governing 
equations to a set of evolution equations for the interface shape h and the contact- 
line position a as defined in figure 1.  This system includes the effects of viscosity, 
surface tension, gravity, thermocapillarity and wetting characteristics and general- 
izes the approach of Greenspan (1978) to non-isothermal systems with gravity and 
with power-law forms for 8 = F(U). Both two-dimensional and axisymmetric drops 
have been examined for small capillary numbers. 

8.1 Isothermal spreading 
When gravity acts downward toward the plate, static drops (8, > 0)  are flattened 
at their centres and hence extend outward further than they would in a gravity-free 
environment. 

When the drop spreads finitely far, the final approach is exponential. However, at  
earlier times or if the drop spreads to infinity (8, = 0)) the drop spreading follows a 
power law. We have found that gravitational forces can be very important on the 
scaling law at long times when the drop is very flat, even though they are negligible 
at earlier times when the drop is thicker. This prediction is in accord with the 
observations of Cazabat & Cohen Stuart (1987). Table 1 shows, if one takes the 
mobility exponent m = 3 so that (8-6,)  cc v', that there is excellent agreement 
between the present theory and the existing isothermal experiments, a result that 
gives validation to both the m = 3 model and the uniform theory used. This uniform 
theory supposes that all local (molecular) physics at  the contact line is incorporated 
into the function F of 6 = F(U). 

The approach used here could also be used to study spreading drops on the 
underside of the plate. One sets G < 0 and then examines the competition between 
viscous spreading and the tendency for pendant-drop formation. Yiantsios & Higgins 
(1989) study Rayleigh-Taylor instabilities of continuous film using (4.8) with = 
B = 0 ,  C =  1. 

8.2. Non-isothermal spreading 
In  isothermal spreading capillary effects, which act along the whole liquid/gas 
interface, compete with the effects of wetting at  the contact line. The influence of the 
heat transport is to create thermocapillary forces on the interface that enter the 
competition as well. They substantially retard (augment) the spreading when the 
plate is heated (cooled). They further create interfacial deformations; in the model 
posed the shape and slope are regular but the curvature is infinite at  the contact line. 
Since the effect of thermocapillary is distributed along the whole interface, this 
locally integrable singularity should not be an important factor. 

The general conclusion is that heating (cooling) the plate retards (augments) 
spreading. When 8, = 0, the isothermal drop will spread to infinity. If the plate is 
heated, and 8, = 0 still, then the drop will spread only finitely far no matter how 
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weakly the plate is heated. If 0, > 0, the isothermal drop will always spread finitely 
far. We have examined the final states and determined the precise behaviour as a 
function of heating/cooling and 0,. These results show the existence of a mechanism 
for the thermal control of spreading, one that is quite sensitive to thermal gradients. 

There are a number of generalizations of the present work that would be 
interesting. A direct numerical simulation of the evolution equation could determine 
effects present when C is not small. Such results would overlap the model of Hocking 
(1977, 1981, 1983). Haley & Miksis (1991) have done such initial-value calculations 
in the isothermal case. More general thermal boundary conditions might be 
appropriate especially if one wishes to model more precisely the contact-line region. 
(Near the contact line the convective boundary layer in the gas, modelled by the 
heat-transfer coefficient, is thicker than the liquid film.) The heat transport in our 
model is conduction dominated. Thus, the thermocapillary circulation transports 
little heat, though this transport might become substantial if the heating were more 
intense. Convective effects might be incorporated into the evolution equation as well 
as variations with temperature of the viscosity. We have a uniformly heated plate so 
that the advancing contact angle O,, a local value, is constant. If the plate had non- 
uniform temperature, then one might have to account for 0, = 0 , (T) ,  or more 
generally, 0 = F(U, 5"). 

The present work suggests experiments of several varieties. One class could involve 
qualitative questions such as augmentation or retardation of spreading by heat 
transfer. A second class could involve quantitative explorations into power laws for 
spreading, and interface shapes. 

One phenomenon that the experiments might reveal is the presence of a type of 
thermocapillary instability in cases where the plate is heated. Consider such a drop 
that has spread to its finite equilibrium. If the thermocapillary-driven motion were 
absent and the layer had uniform thickness h, = 1, then one could analyse the 
instability of the state via (4.8) with /3 = 0 and, say, 7 = C-9. This has been done by 
Burelbach, Davis & Bankoff (1988) in their $9 if one sets E = 0, K % 1. In our 
notation for the two-dimensional case they would predict steady, cellular instabilities 
if both M / G  > 1 and a, > i$r(&-G)-l hold. Such instabilities might lead to 
multicellular flows rather than the double cell seen above. Clearly, such conclusions 
about instability would be modified by the fact that h, = h,(z) for the drop, that 
there is motion within the drop, and that there are contact-line conditions that must 
hold. If such instabilities were present, then they would also be present before the 
drop reached its final state and so would affect the spreading rates. In sum, the full 
stability problem could be addressed using the evolutionary system derived here, 
and experimenters should be alerted to the potential presence of this more complex 
behaviour. 
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Appendix. Integration of the two-dimensional quasi-static equation for 
0, = 0 

Consider, for G = 0, equation ( 7 . 1 ~ )  and its associated side conditions: 
h,,+S#lnh = -sl, 

h,(O) = 0, 
h(a) = 0, h,(a) = 0, 

2 hdx=  1. 1 
iltiply (A l a )  by h,, integrate and use the given conditions to obtain n 

ht = Whln-,  h m  
h 

where h(0) = h, is at the moment unknown. Define 

and transform (A 2)  to the following: 

Now integrate (A 4) up to the contact line at x = a, 

where we have chosen the positive root. Evaluate (A 5) at the apex : x = 0, v = 0 to 
obtain 

3i@ h =-a2. 
2Tc 

Now, substitute (A6)  into (A4)  and (A5) ,  and find from ( A 5 )  that, for some 
function F ,  1 

XI F ( w )  = -(a-x). 
2a (A 7) 

Solve for w and there is a function G, related to F-I, that gives 

We now apply to volume constraint (A i d )  to (A 8) and obtain that -so &a3 G E ( l - X ) ] d X  = 1, 
x 

where X = x/a. Since the integral is independent of a, there exists a constant k such 
that 

for any M > 0. 
a3& = k3 (A 10) 
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